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LIPSCHITZ FUNCTIONS WITH MAXIMAL

CLARKE SUBDIFFERENTIALS ARE GENERIC

JONATHAN M. BORWEIN AND XIANFU WANG

(Communicated by Dale Alspach)

Abstract. We show that on a separable Banach space most Lipschitz func-
tions have maximal Clarke subdifferential mappings. In particular, the generic
nonexpansive function has the dual unit ball as its Clarke subdifferential at
every point. Diverse corollaries are given.

1. Introduction and definitions

We shall be working in a separable Banach space E, with norm ‖ · ‖, whose
topological dual is denoted by E∗ and whose dual unit ball is denoted by B∗. For
S ⊂ E, a closed convex cone, the positive polar cone is defined by:

S+ := {x∗ ∈ E∗| 〈x∗, s〉 ≥ 0 for every s ∈ S}.

Let A ⊂ E be an open bounded convex set. Throughout f : A 7→ R denotes a
Lipschitz function and is said to be nonexpansive if |f(x) − f(y)| ≤ ‖x − y‖ for
all x, y ∈ A while f is S-nondecreasing if f(y) ≥ f(x) whenever y − x ∈ S. Note
that every function is 0–nondecreasing. The Clarke derivative [5] at point x in the
direction v is given by

f0(x; v) := lim sup
y→x

t↓0

f(y + tv) − f(y)

t
.

The Clarke subdifferential ∂cf is given by:

∂cf(x) := {x∗|〈x∗, v〉 ≤ f0(x; v) for all v ∈ E}.

Correspondingly the Michel-Penot derivative [12] at x in the direction v is given by

f�(x; v) := sup
y

lim sup
t↓0

f(x + ty + tv) − f(x + ty)

t
.

The Michel-Penot subdifferential ∂mpf is then given by:

∂mpf(x) := {x∗|〈x∗, v〉 ≤ f�(x; v) for all v ∈ E},

Received by the editors September 28, 1998.
1991 Mathematics Subject Classification. Primary 49J52; Secondary 26E25, 54E52.
Key words and phrases. Lipschitz function, Clarke subdifferential, separable Banach spaces,

Baire category, partial ordering, Banach lattice, approximate subdifferential.
The first author’s research was supported by NSERC and the Shrum endowment of Simon

Fraser University.

c©2000 American Mathematical Society

3221

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3222 JONATHAN M. BORWEIN AND XIANFU WANG

and is always a convex subset of the Clarke subdifferential but is not usually a
closed multifunction. The Dini–Hadamard derivative of f at x in the direction v is

f−(x, v) := lim inf
t↓0

f(x + tv) − f(x)

t
,

and the Dini subdifferential is ∂−f(x) := {x∗| 〈x∗, v〉 ≤ f−(x, v) for all v ∈ E}.
The approximate subdifferential of f at x [8] is then defined as:

∂af(x) :=
⋂

δ>0

w∗cl[∂−f(Bδ(x))] = {w∗ lim
xn→x

x∗
n| x∗

n ∈ ∂−f(xn)},

where the second equality follows from the w∗–sequential compactness of the dual
unit ball, which obtains because E is separable. The central goal of this note is to
show that “most” Lipschitz functions have maximal Clarke subdifferential mappings
in a sense that we make precise below.

2. Main result

Let C be a w*–compact convex subset of E∗. By the uniform boundedness
theorem, C is norm bounded, say by K. Define the support function of C: σC(s) :=
sup{〈s, x∗〉| x∗ ∈ C} for each s ∈ E. σC is sublinear. As C is bounded, σC is finite
everywhere with Lipschitz constant K on E. Consider

NC := {f | f : A 7→ R and f(x) − f(y) ≤ σC(x − y) for all x, y ∈ A}.

If f ∈ NC , then f(x) − f(y) ≤ K‖x − y‖ for all x, y ∈ A, and so f is Lipschitz.
Hence, NC is a special class of K–Lipschitz functions defined on A. If x∗ ∈ C, then

〈x∗, x〉 − 〈x∗, y〉 = 〈x∗, x − y〉 ≤ σC(x − y),(1)

for all x, y ∈ A, thus x∗ ∈ NC . From (1), we have 〈x∗, x〉− σC(y) ≤ σC(x− y), and

σC(x) − σC(y) ≤ σC(x − y),

which implies σC ∈ NC . We continue with three simple lemmas without proof.

Lemma 1. For every x ∈ A, the function σC(· − x) ∈ NC .

Lemma 2. Assume fα ∈ NC for α ∈ I, a finite set. Then supα∈I fα ∈ NC and
infα∈I fα ∈ NC .

The previous lemma remains true for arbitrary index sets when the respective
supremum or infimum is finite. On NC we will use the metric

ρ(f, g) := sup
x∈A

|f(x) − g(x)|.

Lemma 3. For any bounded set A, the metric space (NC , ρ) is complete.

Thus, in (NC , ρ) the Baire category theorem is applicable and every countable
intersection of dense open sets is dense: a set containing such a dense Gδ set is
called generic or residual and the complement of such a set is meagre. Our central
result may now be stated.

Theorem 1. In (NC , ρ), the set

{f ∈ NC | ∂cf ≡ C on A}

is a residual set.
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LIPSCHITZ FUNCTIONS WITH MAXIMAL CLARKE SUBDIFFERENTIALS 3223

Proof. Fix x ∈ A and v ∈ E. Consider

Gk :=

{

f ∈ NC |
f(x + tv) − f(x)

t
− σC(v) > −

1

k
for some 0 < t <

1

k

}

.

(a) Gk is open in NC . Let f0 ∈ Gk. Then for some 0 < t < 1/k we have

f0(x + tv) − f0(x)

t
− σC(v) > −1/k.(2)

Let ρ(f, f0) < ε and f ∈ NC . Consider

f(x + tv) − f(x)

t
− σC(v)

=
(f(x + tv) − f(x)) − (f0(x + tv) − f0(x))

t
+

f0(x + tv) − f0(x)

t
− σC(v)

≥ −
|f(x + tv) − f0(x + tv)| + |f(x) − f0(x)|

t
+

f0(x + tv) − f0(x)

t
− σC(v)

≥ −
2ε

t
+

f0(x + tv) − f0(x)

t
− σC(v).

The last expression is greater than −1/k by equation (2). We may set ε sufficiently
small such that

−2ε

t
+

f0(x + tv) − f0(x)

t
− σC(v) > −

1

k
.

Thus, the same t may be used, and so B(f0, ε) ⊂ Gk.
(b) Gk is dense in NC . With f ∈ NC , for every ε > 0 we verify that open ball

B(f, 3ε) contains a point of Gk. Define h : E 7→ R by h(x̃) := f(x)− ε+σC(x̃−x),
which is in NC by Lemma 1, and set

h1 := min{f, h}, h2 := max{f − 2ε, h1}.

Because f, f − 2ε, h ∈ NC , Lemma 2 shows h1 ∈ NC , as is h2. Since h1 ≤ f and
f − 2ε ≤ f , we have f − 2ε ≤ h2 ≤ f . As f, σC(· − x) are continuous at x, for
0 < δ < ε/2 sufficiently small we have for y ∈ Bδ(x),

f(x) −
ε

2
≤ f(y) ≤ f(x) +

ε

2
(3)

and

−
ε

2
≤ σC(y − x) ≤

ε

2
.(4)

Now for x̃ ∈ Bδ(x) we have

h(x̃) ≤ f(x) − ε + ε/2 ≤ f(x) −
ε

2
≤ f(x̃),

and so h1 = min{f, h} = h on Bδ(x). On the other hand, on Bδ(x) by equations (4)
and (3) we have

h1(x̃) = h(x̃) ≥ f(x) − ε − ε/2 ≥ f(x) −
3ε

2

and

f(x̃) − 2ε ≤ f(x) −
3ε

2
,
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and so h2 = h1 = h on Bδ(x). Choosing 0 < t < 1/k sufficiently small such that
x + tv ∈ Bδ(x), we have

h2(x + tv) − h2(x)

t
=

h(x + tv) − h(x)

t

=
f(x) − ε + σC(tv) − (f(x) − ε)

t
= σC(v),

which shows h2 ∈ Gk while h2 is arbitrarily close to f .
(c) Since Gk is open and dense in NC ,

Gx,v :=

∞
⋂

k=1

Gk

is a dense Gδ set in NC . If f ∈ Gx,v, then for every k we can find 0 < tk < 1/k
such that

f(x + tkv) − f(x)

tk
− σC(v) > −

1

k
,

and taking the limit we derive

f0(x, v) ≥ f�(x, v) ≥ lim sup
t↓0

f(x + tv) − f(x)

t
≥ σC(v).

(d) Now let {vk} be a norm dense countable set in E. For each vk, the set Gx,vk

is a dense Gδ set in NC . Hence,

Gx :=

∞
⋂

k=1

Gx,vk

is also a dense Gδ set in NC .
Given f ∈ Gx we note that for each k we have

f0(x, vk) ≥ f�(x, vk) ≥ σC(vk).

Because f0(x, ·), f�(x, ·) and σC(·) are Lipschitz, we deduce

f0(x, v) ≥ f�(x, v) ≥ σC(v),

for every v ∈ E.
(e) Finally let {xk} be a norm dense countable set in A. Since each Gxk

is a
dense Gδ set in NC , the set

G :=

∞
⋂

k=1

Gxk

is also a dense Gδ set in NC . For f ∈ G, and each positive integer k we have
f0(xk, v) ≥ σC(v) for all v ∈ E. Since f0(x, v) is upper semicontinuous in x, we
obtain

f0(x, v) ≥ σC(v),

for every x ∈ A and v ∈ E.
Since f ∈ NC , for every v ∈ E, we have f0(x, v) =

lim sup
y→x

t↓0

f(y + tv) − f(y)

t
≤ lim sup

y→x

t↓0

σC(y + tv − y)

t
= lim sup

t↓0

σC(tv)

t
= σC(v).

(5)
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Then for f ∈ G, we have f0(x, v) = σC(v) for every x ∈ A and v ∈ E. Dually,
∂cf ≡ C on A.

Unbounded domains are only slightly more difficult to handle. In particular, let
us now consider:

XC := {f : E 7→ R| f(x) − f(y) ≤ σC(x − y) for x, y ∈ E}.

Define the metric of uniform convergence on bounded sets, ρ̃, on XC by

ρ̃(f, g) :=

∞
∑

n=1

1

2n

ρn(f, g)

1 + ρn(f, g)
where ρn(f, g) := sup

x∈nB

|f(x) − g(x)|.

For the metric ρ̃ (or many variants, for example ρ̃(f, g) :=
∑∞

n=1
1/2nρn(f, g)),

f → g if and only if f → g on nB in the metric ρn for every n. In an entirely
standard fashion, we may verify that (XC , ρ̃) is complete. For fixed x, v, with f0, t
as in equation (2) there exists some integer N > 0 such that ‖x‖ ≤ N, ‖x+tv‖ ≤ N .
By definition of ρ̃,

1

2N

ρN(f, f0)

1 + ρN (f, f0)
≤ ρ̃(f, f0).

For ρ̃(f, f0) < ε, we have ρN (f, f0) ≤ (2Nε)/(1− 2Nε). Thus for small ε, the same
argument in (a) applies to guarantee Gk being open. The arguments in (b), (c),
(d), (e) still apply. Hence:

Corollary 1. In (XC , ρ̃), the set

{f ∈ XC | ∂cf ≡ C on E}

is residual.

One should compare Corollary 1 with the following result due to Jouini [11]:

Proposition 1. Let K be a nonempty convex compact subset of Rn. Then there
exists a Lipschitz function FK : Rn 7→ R such that, for all x ∈ Rn, K = ∂cFK(x).

We have generalized Jouini’s result in three ways: (i) from Rn to an arbitrary
separable Banach space, (ii) Lipschitz functions with maximal subdifferential are
generic, (iii) our technique is much simpler and the proof less ambiguous.

When C := {x∗}, a singleton, for every f ∈ NC we have f(x)−f(y) = 〈x∗, x−y〉
for x, y ∈ A. Thus NC consists of all affine functionals of the form β + 〈x∗, ·〉.
Every f ∈ NC then has gradient x∗. Thus, it is only interesting to consider C
being nonsingleton in the sequel. We next record a result for the Michel-Penot
subdifferential.

Corollary 2. For every countable (dense) set D ⊂ A, the set

NC(D) := {f ∈ NC | ∂mpf(x) = C for each x ∈ D}

is residual in NC .

Proof. From step (d) of Theorem 1, for x ∈ A, Gx is a dense Gδ set in NC . If
f ∈ Gx, we have

f�(x, v) ≥ σC(v) for every v ∈ E,

and dually ∂mpf(x) ⊃ C. As f ∈ NC , we have

f�(x, v) ≤ f0(x, v) ≤ σC(v) for every v ∈ E;
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3226 JONATHAN M. BORWEIN AND XIANFU WANG

then ∂mpf(x) ⊂ C. Thus, ∂mpf(x) = C. For a countable set D, the set G :=
⋂

x∈D Gx is the required residual set in NC .

The Michel-Penot subdifferential agrees with the Gâteaux derivative whenever
the latter exists, and the separable Banach space version of Rademacher’s theorem
[4] ensures members of NC are Gâteaux differentiable except on a Haar–null set.
Thus, no member of NS can have ∂mpf(x) = C except on a null set.

Noting that

NB∗ := {f | f : A 7→ R is nonexpansive with respect to ‖ · ‖},

we obtain:

Corollary 3. In the space of nonexpansive functions, (NB∗ , ρ), the set

{f ∈ NB∗ | ∂cf ≡ B∗ on A}

is a residual set.

When E := R1, this provides a generic version of Rockafellar’s original example
[13]. More generally, it provides generic examples of some of the constructions in
[2].

Remarks 1. (i) In (NB∗ , ρ), uncountably many nonexpansive functions not differ-
ing by constants have maximal Clarke’s subdifferentials. To see this, fix x0 ∈ A and
define P (f) := f −f(x0). Then (P (NB∗), ρ) is a complete metric space without iso-
lated points, and {f ∈ NB∗ | ∂cf ≡ B∗ on A, f(x0) = 0} is residual in (P (NB∗), ρ).
In a complete metric space without isolated points, each residual set is uncountable.

(ii) Every C1 “tube” is a Clarke–subdifferential map. Indeed, by Corollary 3
we may take f : A 7→ R with ∂cf ≡ B∗. Let g : A 7→ R be locally Lipschitz
and strictly Gâteaux differentiable on A. Then by Proposition 2.3.3 in [5] we have
∂c(f + g)(x) = ∇g(x) + B∗ for all x ∈ A.

Suppose f ∈ NC is S–nondecreasing. For v ∈ S, x ∈ A we have

− f0(x,−v) = − lim sup
y→x

t↓0

f(y + t(−v)) − f(y)

t
= lim inf

y→x

t↓0

f(y) − f(y − tv)

t
≥ 0.

If x∗ ∈ ∂cf(x), then 〈x∗, v〉 ≥ −f0(x,−v) ≥ 0. Thus x∗ ∈ S+. Together with
equation (5), we obtain ∂cf ⊂ C ∩ S+. By Lebourg’s mean value theorem [5] for
every x, y ∈ A there exists u ∈ (x, y) such that

f(x) − f(y) = 〈x∗, x − y〉 ≤ σC∩S+(x − y),

where x∗ ∈ ∂cf(u). It follows that f ∈ NC∩S+ . Conversely, if f ∈ NC∩S+ ⊂ NC ,
for every x ∈ A and s ∈ S with x + s ∈ A we have

f(x) − f(x + s) ≤ σC∩S+(−s) ≤ 0,

which implies f is S–nondecreasing. In other words,

NC∩S+ = {f ∈ NC | f is S–nondecreasing }.(6)

Corollary 4. In (NC∩S+ , ρ), the set

{f ∈ NC∩S+ | ∂cf ≡ C ∩ S+ on A}

is a residual set.
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Recall as in [9, page 369] that a partially ordered set is a lattice if every two–
point set {x, y} has a supremum and an infimum, denoted by x ∨ y and x ∧ y
respectively. A partially ordered linear space in which this condition holds is called
a linear lattice. Define |x| := x ∨ (−x), x+ = x ∨ 0. A normed lattice is a linear
lattice with a norm such that |x| ≤ |y| implies ‖x‖ ≤ ‖y‖. A normed lattice that
is also complete is called a Banach lattice. Classical separable Banach lattices are:
c0 with the supremum norm and lp for 1 ≤ p < +∞ with p–norm for the ordering
x ≤ y defined by x(n) ≤ y(n) for all n, Lp[0, 1] for 1 ≤ p < +∞ with the p–norm
and the ordering f ≤ g defined by f(p) ≤ g(p) almost everywhere on [0, 1], and
C[0, 1] with the supremum norm and pointwise order. By equation (6),

NB∗∩S+ := {f | f : A 7→ R is nonexpansive with respect to ‖ · ‖

and S–nondecreasing}.

Corollary 5. In a separable Banach lattice E with S := {x ∈ E| x ≥ 0}, the set

{f ∈ NB∗∩S+ | ∂cf ≡ (B∗)+ on A}

is a residual set in (NB∗∩S+ , ρ), the space of nondecreasing and nonexpansive func-
tions.

Example 1. Cornet [11] formalized a nonsmooth marginal price rule in mathe-
matical economics by establishing that given a closed production set Y the price
p ∈ NY (y) for all y in the boundary of Y . Here NY (y) is the Clarke normal cone of
Y at y. Take f : E 7→ R with ∂cf(x) ≡ C. The epigraph of f as always is defined
as:

epi f := {(x, r) ∈ E × R : f(x) ≤ r}.

The Clarke tangent cone and normal cone to the epigraph of f at (x, f(x)) are then
constant set–valued maps:

Tepi f (x, f(x)) = {(v, β)| σC(v) ≤ β} and Nepi f (x, f(x)) =
⋃

λ≥0

λ[C,−1].

For every (x, r) ∈ epi f and (v, β) ∈ Tepi f (x, f(x)) we have

f(x + v) ≤ f(x) + σC(v) ≤ r + β,

thus epi f + Tepi f ⊂ epi f .
In Rn, if we take 0 ∈ C ⊂ Rn−1 with n extreme points v1, . . . , vn such that

〈(vi,−1), (vj ,−1)〉 = 0 for i 6= j,

then Nepi f (x, f(x)) is the closed convex cone generated by (v1,−1), . . . , (vn,−1)
which is linearly isometric to R+

n . Thus Tepi f (x, f(x)) is linearly isometric to R−
n .

Then epi f is isometric to a closed set Y ⊂ Rn such that NY (y) = R+
n for y in

the boundary of Y and Y − R+
n ⊂ Y (“free disposal”). Thus the marginal rule

generically imposes no restriction on the price vector.

Let us define the oscillation of f at x by

Ωf
H(x) := {w∗ lim

xn→x
∇f(xn)| xn 6∈ H},

where H is any Haar–null set containing the set of points at which f fails to be
Gâteaux differentiable. Since E is separable, the dual unit ball B∗ is metrizable
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3228 JONATHAN M. BORWEIN AND XIANFU WANG

in the w* topology. The sequence (∇f(xn)) thus has w* convergent subsequences

and hence Ωf
H(x) 6= ∅. In [14] Thibault showed that Ωf

H(x) is w* compact and

∂cf(x) = w∗cl-conv[Ωf
H(x)],(7)

so w∗cl-conv[∂af(x)] = ∂cf(x). Denote the norm on E∗ by ‖ · ‖∗ and denote the
unit sphere by U∗ := {x∗ ∈ B∗| ‖x∗‖∗ = 1}.

Lemma 4. Assume E is an infinite dimensional Banach space. Then the dual
sphere is w* sequentially dense in the dual ball:

B∗ = {x∗| there exists x∗
n

w∗

→ x∗ with ‖x∗
n‖∗ = 1}.

Proof. If E is separable, this is immediate from the metrizability of the dual
ball. We give the proof in full generality. Assume ‖x∗‖∗ < 1. By the Josefson-

Nissenszweig theorem [6] there is a sequence y∗
n

w∗

→ 0 with ‖y∗
n‖∗ = 1. Define

φ(t) := ‖ty∗
n + x∗‖∗. As

φ(1 + ‖x∗‖∗) ≥ (1 + ‖x∗‖∗)‖y
∗
n‖∗ − ‖x∗‖∗ = 1

and φ(0) = ‖x∗‖∗ < 1, we may choose tn ∈ [0, 1+‖x∗‖∗] such that ‖tny∗
n+x∗‖∗ = 1.

Define x∗
n := tny∗

n + x∗. As y∗
n

w∗

→ 0 and {tn} is bounded, we obtain x∗
n

w∗

→ x∗.

Lemma 5. Assume E is a Banach space with a Gâteaux differentiable norm ‖ · ‖.
Then the set of extreme points of B∗, denoted by ext(B∗), is norm dense in U∗.

Proof. Take ‖x∗‖∗ = 1. For every 1 > ε > 0, by the Bishop–Phelps theorem, there
exists y∗ ∈ E∗ with ‖y∗ − x∗‖∗ < ε/2 such that y∗(y) = ‖y∗‖∗ for some ‖y‖ = 1.
Then 1 − ε/2 < ‖y∗‖∗ < 1 + ε/2 and

‖
y∗

‖y∗‖∗
− x∗‖∗ ≤ ‖

y∗

‖y∗‖∗
− y∗‖∗ + ‖y∗ − x∗‖∗ < ε.

We show that y∗/‖y∗‖∗ is an extreme point of U∗. Indeed, if y∗/‖y∗‖∗ = λz∗1 +
(1 − λ)z∗2 for some 0 < λ < 1 with ‖z∗1‖∗ = 1, ‖z∗2‖∗ = 1, then

1 =
y∗

‖y∗‖∗
(y) = λz∗1(y) + (1 − λ)z∗2(y)

implies z∗1(y) = 1 = z∗2(y). We thus have z∗1 , z∗2 ∈ ∂‖ · ‖(y). The Gâteaux differen-
tiability of ‖ · ‖ at y implies z∗1 = z∗2 .

Theorem 2. Assume E is an infinite dimensional separable Banach space with
Gâteaux differentiable norm. In (NB∗ , ρ),

(i) the set {f ∈ NB∗ | Ωf
H(x) ≡ B∗ on A} is a residual set; and so

(ii) the set {f ∈ NB∗ | ∂af(x) ≡ B∗ on A} is a residual set.

Proof. Assume f has ∂cf ≡ B∗. By equation (7), w∗cl-conv[Ωf
H(x)] = B∗. From

the Krein–Milman converse theorem [7, page 74], we have

ext(B∗) ⊂ w∗-cl[Ωf
H(x)] = Ωf

H(x).

Lemma 5 shows ext(B∗) is norm dense in the sphere U∗, and so

U∗ ⊂ w∗-cl[ext(B∗)] ⊂ Ωf
H(x),

by the w*–closedness of Ωf
H(x). From Lemma 4,

B∗ = w∗-cl[U∗] ⊂ Ωf
H(x) ⊂ B∗.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



LIPSCHITZ FUNCTIONS WITH MAXIMAL CLARKE SUBDIFFERENTIALS 3229

(i) follows by applying Corollary 3. Then (ii) follows from Ωf
H(x) ⊂ ∂af(x) ⊂

∂cf(x) and (i).

Theorem 2 holds isometrically in separable Hilbert space and the classical Lp

spaces (1 < p < ∞) and isomorphically in every infinite dimensional separable
space since each separable Banach space has an equivalent Gâteaux differentiable
norm (with its dual norm being strictly convex). Theorem 2 (ii) also holds in R by
[3]. Sadly we do not know whether this is true in Rn with 2 ≤ n < +∞.

Finally we note that in [1] a careful study was made of those Lipschitz functions
whose Clarke’s subdifferentials are minimal with respect to set inclusion, viewed as
norm to w* upper semicontinuous multifunctions with nonempty convex compact
images. These functions capture most of the concrete classes of Lipschitz functions
occurring in practice – convex functions, smooth functions, distance functions in
appropriately smooth norms, etc. Nonetheless, from Corollary 3 we obtain:

Corollary 6. On a separable Banach space, the set of nonexpansive functions with
minimal Clarke subdifferentials is first category in (NB∗ , ρ).
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